

Mark Scheme (Results)

January 2021

Pearson Edexcel International GCSE In Chemistry (4CH1) Paper 1C and Science (Double Award) (4SD0) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2021 Publications Code 4CH1_1C_2101_MS All the material in this publication is copyright © Pearson Education Ltd 2021

PMT

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer		Notes	Marks
1 (a)			Award 1 mark for each	3
	Start	End	correct row	
	solid	liquid		
	solid	gas	ALLOW gas to solid for sublimation	
	gas	liquid		
	liquid	gas		
(b)	(b) A description that refers to any three of the following points			3
	M1 irregular /random arrange M2 large gaps between them / spaced		ALLOW spread out	
	M3 random movement / move	freely		
	M4 move (very) quickly		IGNORE references to kinetic energy	
				6 marks

Question number	Answer	Notes	Marks
2 (a) (i)	A		1
	A is the correct answer because 100°C is above the boiling point of W		
	B is not the correct answer because X is a solid at 100°C		
	C is not the correct answer because Y is a solid at 100°C		
	D is not the correct answer because Z is a solid at 100°C		
(ii)	В		1
	B is the correct answer because X is a liquid for 1840°C		
	A is not the correct answer because W is a liquid for 67°C		
	C is not the correct answer because Y is a liquid for 1150°C		
	D is not the correct answer because Z is a liquid for 330°C		
(iii)	с		1
	C is the correct answer because Y is a liquid at 1000°C and a gas at 2000°C		
	A is not the correct answer because W is a gas at 1000°C and at 2000°C		
	B is not the correct answer because X is a liquid at 1000°C and 2000°C		
	D is not the correct answer because Z is a gas at 1000°C and at 2000°C		
(b)	ionic	ALLOW electrovalent	1
(c)	the (impure) substance will melt over a range of	ALLOW the (impure)	1
(-)	temperatures	substance will have a lower melting point	
			5 marks

Question number	Answer	Notes	Marks
3 (a) (i)	M1 dissolving M2 diffusion	Answers can be in either order	2
(b) (i)	An explanation that links any two of the following points M1 crystals dissolve faster M2 (potassium iodide/ lead nitrate/ water) particles	ALLOW (potassium iodide /lead nitrate/	2
	move faster / (lead/ iodide) ions move faster / rate of diffusion increases	water) particles have more energy ALLOW molecules in place of particles if referring to water	
	M3 therefore (lead and iodide) ions/ particles meet / collide after a shorter period of time/ sooner	IGNORE references to more collisions or more energetic collisions	
(c) (i) (ii)	3 / three 2+ /+2	ALLOW Pb ²⁺	1 1
(d)	$Pb(NO_3)_2(aq) + 2KI(aq) \rightarrow PbI_2(s) + 2KNO_3(aq)$	ALLOW multiples and fractions	1 7 marks
			7 marks

Question number	Answer	Notes	Marks
4 (a)	Example calculation M1 (volume of oxygen =) 100 – 25 OR 75 (cm ³)	Correct answer of 20.5 % with or without working scores 3	3
	M2 75 ÷ 365 × 100	ALLOW ecf from M1	
	M3 20.5 (%)	ALLOW ecf from M2	
		ALLOW 2 or more significant figures	
		REJECT incorrect rounding Use of 265 instead of 365 gives an answer of 28.3 and scores 2	
		Alternative method	
		M1 (volume of air left =) 265 + 25 OR 290 (cm ³)	
		M2 290 ÷ 365 × 100 OR 79.5 (%)	
		M3 (100 – 79.5 =) 20.5 (%)	
(b) (i)	M1 paint provides a barrier	ALLOW paint forms a coating (on the iron) / paint is non-permeable	2
	M2 which prevents oxygen / water getting to /reacting with the iron	ALLOW air	
(ii)	M1 zinc is more reactive/higher in the reactivity series (than iron)	ALLOW zinc is a sacrificial metal	2
	M2 zinc will oxidise / react / corrode instead of /before iron	IGNORE references to zinc rusting	
		IGNORE references to galvanising	
			7 marks

Answer	Notes	Marks
Method		4
filtration	ALLOW filtering	
simple distillation or fractional distillation	ALLOW distillation	
fractional distillation	REJECT simple distillation or	
	distillation	
crystallisation		
M1 A and B		2
M2 because they are the same height /moved the same distance up the paper / have the same R _f		
values as the spots in the purple ink		
	M2 dep on M1 correct	
	or missing	
M1 D		2
M2 because the spot is closest to the start line		
/travelled the least distance (from the start line) /		
has the lowest R _f value		
	M2 dep on M1 correct	
Example calculation	or missing Correct answer of 86 or	2
		2

86.4 (mm) with or without working scores

10 marks

2

Question number 5 (a)

(b)

(C)

(i)

(ii)

M1 120 × 0.72

M2 86 / 86.4 (mm)

PMT

Question number	Ans	wer	Notes	Marks
6 (a) (b)	precipitate of barium carbonate no precipitate precipitate of calcium carbonate A description that refers points	precipitate of barium sulfate no precipitate precipitate of calcium sulfate to any six of the following	if barium sulfate and calcium carbonate correct but without including 'precipitate of' scores 1 out of 2 ALLOW correct formulae	3
	M1 do a flame test M2 sodium chloride proc M3 add acid M4 potassium carbonate	-	 ACCEPT any description of a flame test ACCEPT yellow-orange or orange IGNORE any flame colour given for the potassium compounds ALLOW any named acid ACCEPT carbon dioxide/gas given off which turns limewater cloudy for M4 M4 is dep on M3 	
	M5 add dilute nitric acid M6 add silver nitrate (solu M7 potassium chloride give M8 potassium iodide give	ves a white precipitate	M7 and M8 are dep on M6 ALLOW addition of chlorine/bromine solution as an alternative to M6 M7 no colour change with potassium chloride	

M8 solution turns brown with potassium iodide If this alternative given no M5	
	9 marks

		PMT

Question number	Answer	Notes	Marks
7 (a)	M1 two lithium atoms each lose one electron /give one electron to oxygen M2 oxygen gains two electrons	ALLOW lithium loses one electron /gives one electron to oxygen	3
	M3 lithium (ion) has an electron configuration of 2 and oxide (ion) is 2,8	ALLOW oxygen becomes 2,8	
		All 3 marks can be scored from diagrams showing the electron configurations of the ions	
		0 marks if reference to sharing electrons	
(b) (i)	M1 (temperature after) = 27.7°C		2
	M2 temperature rise = 10.4 °C	ALLOW ecf from M1	
(ii)	Example calculation	Correct answer of 4400J with or without working scores 4	4
	M1 Use of 100 in Q = m x c (x Δ T)		
	M2 Use of 10.4 in Q = (m x) c x ΔT	ALLOW ecf from (b)(i)	
		100 x 4.2 x 10.4 scores M1 and M2	
	M3 4368J	ALLOW ecf from M1 and M2	
	M4 4400J	ALLOW ecf from M3	
		IGNORE + or - sign in front	
(iii)	Example calculation	of answer Correct answer of -89.8	3
	M1 5210 ÷ 1000 or 5.21	(kJ/mol) scores 3	
	M2 5.21 ÷ 0.0580		
	M3 -89.8(kJ/mol)	ALLOW -90 (kJ/mol) or any number of sig figs as long as correctly rounded.	
(iv)	polystyrene is a good insulator /poor conductor (of heat) OR to minimise/reduce heat loss	ALLOW prevent heat loss	1
			13 marks

Question number	Answer	Notes	Marks
8 (a)	M1 solid		2
	M2 dark grey / black		
(b) (i)	Example calculation	80.0 with no working scores 3	3
	M1 (51 × 79) + (49 × 81) OR 7998		
	M2 7998 ÷ 100		
	M3 80.0	79.9 with no working scores 1	
		79.98 or 80 with no working scores 2	
(ii)	same electron configuration	ALLOW same (total) number of electrons	1
		IGNORE same number of electrons in the outer shell	
		IGNORE references to same number of protons	
(c) (i)	An explanation that links the following three points		3
	M1 the order of reactivity is chlorine (most), bromine and iodine (least)	ACCEPT bromine is	
	M2 chlorine (is most reactive because it) displaces bromine and iodine/ oxidises bromide and iodide (ions) / reacts with sodium bromide and sodium iodide	only displaced by chlorine and iodine is displaced by chlorine and bromine scores M2 and M3	
	M3 bromine (is less reactive than chlorine since it) only displaces iodine / only oxidises iodide (ions) / only reacts with sodium iodide	ALLOW chlorine has two reactions, bromine has one reaction and iodine no reactions for 1 mark out of M2 and M3	
		Deduct 1 mark for incorrect use of ine	

(ii)		and ide e.g. bromine displaces iodide	1
(iii)	bromine cannot displace itself / bromine does not react with sodium bromide OWTTE M1 bromine is reduced and iodide (ions)/l ⁻ is oxidised M2 bromine gains electrons and iodide (ions)/l ⁻ loses electrons	ALLOW there would be no reaction Deduct 1 mark for mention of iodine (ions) being oxidised or losing electrons	2
	OR M1 bromine gains electrons so is reduced M2 iodide (ions) /I ⁻ loses electrons so is oxidised	REJECT iodine (ions) loses electrons so is oxidised	

12 marks

Question number	Answer	Notes	Marks
9 (a)	M1 (propane/it) contains hydrogen and carbon (atoms)	REJECT carbon and hydrogen molecules	2
	M2 only	M2 is dependent on mention of just carbon and hydrogen in M1	
(b) (i)	carbon monoxide	ALLOW CO	1
(ii)	it decreases the capacity of the blood to transport oxygen OWTTE	ALLOW carbon monoxide binds to haemoglobin	1
(c)	M1 (strong electrostatic) attraction between (bonding) pair of electrons		2
	M2 (and) nuclei (of both atoms)	REJECT nucleus	
	OR		
	M1 (bonding) pair of electrons		
	M2 attracted to nuclei	REJECT nucleus	
		0 marks if reference to intermolecular forces between atoms	
(d)	An explanation that links the following three points		3
	M1 (crude oil) produces more long chain hydrocarbons than can be used directly OWTTE	ALLOW less demand for long chain hydrocarbons	
	M2 shorter chain alkanes are more flammable /more useful as fuels	ALLOW shorter chain alkanes/hydrocarbons are more useful	
	M3 alkenes are used to make polymers / plastics		
(e) (i)	M1 C ₃ H ₇ Br		2
	M2 HBr	ALLOW polysubstituted product if correct balancing number in front of Br ₂ and HBr	
(ii)	substitution		1

12 marks	
----------	--

Question number			Answer	Notes	Marks
		(i)	curve of best fit	REJECT dot to dot line	1
		(ii)	M1 lines shown on graph	ALLOW extra point on curve at 7 carbon atoms	2
			M2 value correctly read from graph (expected value between 97 and 103°C)	ACCEPT value to <u>+</u> 1°C	
		(iii)	An explanation that links the following three points		3
			M1 the boiling point increases as the number of carbons / the chain length increases	ALLOW boiling point increases as the M _r increases	
			M2 because the intermolecular forces (of attraction) get stronger	REJECT directly proportional	
			M3 and therefore take more energy to overcome / break		
			Dieak	M3 dep on M2	
				Any mention of breaking covalent bonds does not score M2 or M3	
	(b)		M1 same molecular formula		2
			M2 different displayed / structural formulae	ALLOW different structures/ different arrangement of atoms	
	(c)	(i)	M1 82.8 ÷ 12 or 6.9	0 marks if upside down	2
		(IJ	17.2 ÷ 1 or 17.2	calculation or use of atomic numbers	
			M2 (divide by smallest to give) 1:2.5 which is 2:5	ACCEPT alternative methods	
		(ii)	C ₄ H ₁₀		1

(d)	M1 moles of $CO_2 = 7$ or $X = 7$		3
	M2 moles of $H_2O = 8$ or $Y = 8$		
	M3 balancing number = 11 or Z = 11	ALLOW ecf from incorrect values of X and Y	
			14 marks

	Questio number		Answer	Notes	Marks
11	(a)	(i)	glowing splint relights	REJECT burning splint	1
		(ii)	A description that refers to the following three points		3
			M1 filter out manganese(IV) oxide / solid		
			M2 leave to dry		
			M3 same mass/ 1g of manganese(IV) oxide / solid		
	(b)	(i)	M1 280 ÷ 120		2
			M2 2.33	ALLOW ecf from M1	
				ALLOW any number of significant figures except 1	
		(ii)	An explanation that links the following three points		3
			M1 the concentration of hydrochloric acid is greatest	ALLOW the surface area of zinc is greatest	
				ALLOW greatest number of/more particles (of hydrochloric acid/ zinc)	
			M2 therefore there are more collisions	Mara fragmant collisions	2
			M3 per unit time	More frequent collisions scores M2 and M3	2
		(:::)		Max 1 if incorrect reference to energy	
		(iii)	M1 curve above original and starts at 0		
			M2 curve goes flat at same volume (410cm ³)		

PMT

(iv)	M1 greater surface area M2 more collisions per unit time / more frequent collisions		2
(c)	M1 8.46 × 10 ⁻³ mol of zinc M2 therefore 1.69 × 10 ⁻² mol hydrochloric acid needed (which is less than 2.50 × 10 ⁻² mol) OR	ALLOW any number of sig figs including one e.g. 0.008 moles of zinc, therefore 0.016 moles of acid needed scores M1 and M2	2
	M1 1.25 × 10 ⁻² mol of zinc are needed M2 therefore 0.8(13) g of zinc is needed (and there is only 0.55g)		
			15 marks

PMT